Exercise and Physiology – Fuel

Basics

- **Energy**: the capacity for work
- **Exergonic Reactions**: release energy (high energy state \rightarrow low energy state)
- **Endergonic Reactions**: store or absorb energy
 - Endergonic pathway surpasses exergonic pathway when you eat
- **Anabolic**: use extracted chemical energy from ATP to synthesize new compounds
 - Endergonic + Anabolic: small molecules \rightarrow large molecules; biosynthesis
- **Catabolic**: release energy for biological work
 - Exergonic + Catabolic: large molecules \rightarrow small molecules; biodegradation
- Limits of exercise intensity depend on rate that cells extract, conserve, transfer chemical energy in the food nutrients to the contractile filaments of skeletal muscle

Factors Affecting Bioenergetics

- **Enzymes**
 - Highly specific protein catalysts
 - Accelerate the forward and reverse reactions; neither consumed nor changed in the rxn
 - pH and temperature affect enzyme activity
 - Low pH and high temperature denature enzymes
 - **Denature**: causes protein to lose its shape and the function of the enzyme depends on its shape
 - **Reaction Rates**: operation rate of enzymes
 - **Enzyme mode of Action**: how an enzyme reacts with its specific substrate

- **Coenzymes**
- Rates of Endergonic and Exergonic reactions depend on
 - Substrate availability
 - Enzyme availability
 - Metabolic state of cell (ill, exercising, at rest – rxn rate slower at rest than exercising)
 - Cellular conditions (temperature, pH)

ATP and Stored Sources of Energy

- **Adenosine Triphosphate (ATP)**: adenine + ribose + 3 phosphates; carrier molecule of free energy

\[
\text{ATP Hydrolysis} \quad \text{ATP} \quad \text{ADP} + \text{P} \\
\text{Energy}
\]

\[
\text{ADP Phosphorylation} \quad \text{ADP} + \text{P} \quad \text{ATP} \\
\text{Energy}
\]
Cells contain a small amount of stored ATP as it is a heavy molecule
 – Intramuscular ATP used for short bursts of activity; anaerobic hydrolysis to do so

Phosphocreatine (PCr): high-energy reservoir within cell
 – Intracellular concentration of PCr is 4-6 times more than that of ATP
 – PCr + ADP → Cr + ATP
 – Hydrolysis reaction of PCr reaches a maximum energy yield in 10 seconds
 – Creatine Kinase (enzyme that catalyzes PCr breakdown) cannot supply long-term energy demands
 – When activity is only sustained for a few seconds, ATP is resynthesized from PCr

Adenylate Kinase Reaction
 – Less common in muscle, unless other sources of energy are lacking
 – 2ADP → ATP + AMP
 – This reaction catalyzed by the enzyme Adenylate Kinase

Resynthesis of ATP through Phosphorylation/Oxidation of Macronutrients

- The catabolism of glycogen and fat as energy sources are needed to meet further energy demands, as PCr and Adenylate Kinase cannot supply long-term energy demands
- The breakdown of macronutrients to resynthesize ATP occurs at a rate equivalent to ATP’s rate of use and the intensity of the physical activity performed
 - Resynthesis of ATP can be aerobic or anaerobic → glucose metabolism
 - Resynthesis of ATP can be exclusively aerobic → lipid and protein metabolism
- *Most of energy for ATP generation derives from the aerobic phosphorylation/oxidation pathway*
 - Carbohydrates, lipids, proteins are oxidized; oxygen is reduced

Carbohydrate Metabolism

- Carbohydrate is the only macronutrient to generate ATP anaerobically; next fastest energy source
- Carbohydrate = intramuscular glycogen
- **Glycolysis:** ATP resynthesis from anaerobic catabolism of glycogen
 - 1) 2 ATP + Glucose → 2 Glyceraldehyde-3-phosphate
 - 2) 2 G3P → 2 Pyruvate + 4 ATP (net gain of 2 ATP through substrate-level phosphorylation; also get 2NADH)
- **Phosphofructokinase (PFK):** rate-limiting enzyme in glycolysis

<table>
<thead>
<tr>
<th>PFK Rate Increases</th>
<th>PFK Rate Decreases</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increase in ADP</td>
<td>Increase in Pyruvate</td>
</tr>
<tr>
<td>Increase in Phosphate</td>
<td>Increase in ATP</td>
</tr>
<tr>
<td>Decrease in O2</td>
<td>Increase in H+</td>
</tr>
<tr>
<td>ATP levels low</td>
<td>Increase in Citrate</td>
</tr>
</tbody>
</table>
Fast-twitch muscle fibers contain large quantities of PFK

- **Anaerobic Conditions**
 - Pyruvate reduced into lactate by enzyme lactate dehydrogenase
 - Anaerobic oxidation of NADH → NAD+ for continuation of glycolysis and limited ATP resynthesis
 - Results in lactate accumulation in muscle → muscle fatigue
 - Decreased pH (acidic environment)
 - Slows muscle contraction
 - Slows enzymatic reactions
 - If O₂ becomes available or exercise pace slows
 - NAD+ takes back 2H+ from lactate → pyruvate
 - Pyruvate (oxidized) → energy
 - Pyruvate (via Cori Cycle) → Glucose
 - Cori Cycle sustains Glucose levels
 - Fast twitch muscle fibers shuttle lactate for its conversion to pyruvate
 - Slow twitch fibers take up lactate and convert it pyruvate for re-entry into Citric acid cycle

- **Aerobic Conditions**
 - 2 Pyruvate + 2 NADH⁺ + 2 CoA → 2 AcetylCoA + 2 CO₂ + 2 NADH⁺ + 2H⁺
 - Citric Acid cycle in mitochondria
 - 2 AcetylCoA (oxidized) → 4CO₂ + 6H₂O + 2GTP + 6NADH + 2FADH₂
 - ETC
 - Final electron acceptor = Oxygen → water
 - Oxidative Phosphorylation: process that synthesizes ATP as energy released from redox reactions move electrons from high energy state to low energy state
 - Each NADH + H⁺ → 3 ATP
 - Each FADH₂ → 2 ATP (enters chain at lower energy than NADH)
 - **Net ATP yield from Glucose catabolism = 36 ATP**

<table>
<thead>
<tr>
<th>Quick Comparison</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATP Hydrolysis</td>
</tr>
<tr>
<td>Phosphocreatine</td>
</tr>
<tr>
<td>Adenylate Kinase</td>
</tr>
<tr>
<td>Glycolysis</td>
</tr>
</tbody>
</table>

Citric Acid Cycle produces ~ 34 ATP via Oxidative Phosphorylation
Lipid (Fat) Metabolism

- Occurs only under Aerobic conditions and in mitochondria
- Lipids stored as Triacylglycerol within muscle fibers

<table>
<thead>
<tr>
<th>Hydrolysis of Triacylglycerol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Triacylglycerol + 3H₂O → Glycerol + 3 Fatty Acids</td>
</tr>
<tr>
<td>(enzyme is Lipase)</td>
</tr>
</tbody>
</table>

- Fatty Acids (FFAs)
 - Transferred in blood by Abumin across muscle plasma membrane
 - Bind to intramuscular proteins once in cytosol to enter mitochondria
 - In mitochondria
 - FFA (through Beta Ox.) → Acetyl CoA = NADH + FADH₂ → ETC = ATP
 - Each Triacylglycerol consisting of 3 Fatty Acids (18 carbons each) = 441 ATP from Beta Ox and Citric Acid Cycle/ETC
- Glycerol
 - Glycerol → Pyruvate which forms ATP via oxidative phosphorylation = 19 ATP
- Each Triacylglycerol molecule = 460 ATP
- Increased epinephrine, norepinephrine, glucagon, growth hormone = increased lipase activation

Protein Metabolism

- NOT a preferred source of energy
- Can be used to resynthesize ATP under aerobic conditions
- Occurs in mitochondria
- 1) Deamination of amino acids
 - Takes place in liver and skeletal muscles
- 2) Deaminated products → pyruvate or Acetyl CoA (depending on amino acid)
- Glucogenic: amino acid → pyruvate → AcetylCoA → citric acid cycle
 - Threonine, Serine, Cysteine, Glycine
 - Contribute to Gluconeogenesis (glucose synthesis) during prolonged exercise
- Ketogenic: amino acid → AcetylCoA → citric acid cycle
 - Isoleucine, Leucine, Lysine, Tyrosine, Phenylalanine, Tryptophan
 - Synthesize Triacylglycerol
- Some amino acids enter Citric acid cycle directly
 - Arginine, Glutamine, Tyrosine
Summary

- Fats and Glycogen = major sources for ATP resynthesis
- Carbs are ONLY macronutrient capable of generating ATP anaerobically
- Glycogen supplies energy for ATP synthesis during maximal exercise
- Carb → energy is faster than fatty acid → energy
- Carbs most useful for immediate energy release
- Fat provides energy for high-intensity, long duration exercise
- Carbohydrate metabolism is needed for fat oxidation
 - Oxaloacetate is regenerated from pyruvate (a product of glycolysis) and is required for entry of fatty acids into citric acid cycle
 - Fat oxidation is slower than glucose/glycogen catabolism

Simplified Glycolysis diagram. Molecule names contain extra capitals to illustrate components. 21/02/2010 followchemistry.wordpress.com
Exercise + Physiology

Fuel

[Diagram of the Krebs cycle and electron transport chain]

[a] Complex I receives 2 electrons from NADH and passes them to CoQ via FMN and an Fe-S protein. During this process, 4 H⁺ are pumped out of the matrix by complex I.

[b] Complex III passes electrons from CoQH₂ to cytochrome c via cytochromes b and c, and an Fe-S protein. CoQH₂ carries 2 H⁺ across the inner membrane and 2 more H⁺ are pumped out of the matrix.

[c] Complex IV receives electrons from cytochrome c and, via cytochrome a and a₅, passes them to molecular oxygen, which is reduced to water as 2 more H⁺ are pumped from the matrix by complex IV.

[d] ATP synthase uses the energy from the proton gradient generated during electron transport to synthesize ATP from ADP and Pᵢ.